f08 — Least-squares and Eigenvalue Problems (LAPACK) f08pec

NAG C Library Function Document

nag dhseqr (f08pec)

1 Purpose

nag_dhseqr (f08pec) computes all the eigenvalues, and optionally the Schur factorization, of a real
Hessenberg matrix or a real general matrix which has been reduced to Hessenberg form.

2 Specification

void nag_dhseqr (Nag_OrderType order, Nag_JobType job, Nag_ComputeZType compz,
Integer n, Integer ilo, Integer ihi, double h[], Integer pdh, double wr[],
double wi[], double z[], Integer pdz, NagError x*fail)

3 Description

nag_dhseqr (f08pec) computes all the eigenvalues, and optionally the Schur factorization, of a real upper
Hessenberg matrix H:

H=2TZ",

where T is an upper quasi-triangular matrix (the Schur form of H), and Z is the orthogonal matrix whose
columns are the Schur vectors z;. See Section 8 for details of the structure of 7.

The function may also be used to compute the Schur factorization of a real general matrix A which has
been reduced to upper Hessenberg form H:

A =QHQ", where Q is orthogonal,
= (Q2)T(Q2)".

In this case, after nag _dgehrd (f08nec) has been called to reduce A to Hessenberg form, nag dorghr
(f08nfc) must be called to form @ explicitly;) is then passed to nag dhseqr (f08pec), which must be
called with compz = Nag_UpdateZ.

The function can also take advantage of a previous call to nag_dgebal (f08nhc) which may have balanced
the original matrix before reducing it to Hessenberg form, so that the Hessenberg matrix H has the
structure:

Hll H12 H13
H22 H23
H33

where H |, and Hs; are upper triangular. If so, only the central diagonal block H,, (in rows and columns
1}, t0 %5;) needs to be further reduced to Schur form (the blocks H, and H,; are also affected). Therefore
the values of i;, and ¢;; can be supplied to nag_dhseqr (f08pec) directly. Also, nag dgebak (f08njc) must
be called after this function to permute the Schur vectors of the balanced matrix to those of the original
matrix. If nag dgebal (f08nhc) has not been called however, then ¢;,, must be set to 1 and ¢;; to n. Note
that if the Schur factorization of A is required, nag dgebal (f08nhc) must not be called with job =
Nag_Schur or Nag DoBoth, because the balancing transformation is not orthogonal.

nag_dhseqr (f08pec) uses a multishift form of the upper Hessenberg QR algorithm, due to Bai and
Demmel (1989). The Schur vectors are normalized so that ||z;||, = 1, but are determined only to within a
factor +1.

4 References

Bai Z and Demmel] W (1989) On a block implementation of Hessenberg multishift QR iteration Internat.
J. High Speed Comput. 1 97-112

[NP3645/7] fO08pec.1

f08pec NAG C Library Manual

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

S Parameters
1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: job — Nag JobType Input
On entry: indicates whether eigenvalues only or the Schur form 7' is required, as follows:
if job = Nag_EigVals, eigenvalues only are required;
if job = Nag_Schur, the Schur form 7T is required.
Constraint: job = Nag_EigVals or Nag_Schur.

3: compz — Nag_ ComputeZType Input
On entry: indicates whether the Schur vectors are to be computed as follows:
if compz = Nag NotZ, no Schur vectors are computed (and the array z is not referenced);

if compz = Nag_InitZ, the Schur vectors of H are computed (and the array z is initialised by
the routine);

if compz = Nag_UpdateZ, the Schur vectors of A are computed (and the array z must
contain the matrix () on entry).

Constraint: compz = Nag_NotZ, Nag_InitZ or Nag_UpdateZ.

4: n — Integer Input
On entry: n, the order of the matrix H.
Constraint: n > 0.
5: ilo — Integer Input
6: ihi — Integer Input

On entry: if the matrix A has been balanced by nag_dgebal (f08nhc), then ilo and ihi must contain
the values returned by that function. Otherwise, ilo must be set to 1 and ihi to n.

Constraint: ilo > 1 and min(ilo,n) < ihi < n.

7: h[dim] — double Input/Output
Note: the dimension, dim, of the array h must be at least max(1, pdh x n).

If order = Nag_ColMajor, the (7, j)th element of the matrix H is stored in h[(j — 1) X pdh + i — 1]
and if order = Nag RowMajor, the (i,j)th element of the matrix H is stored in
h[(i — 1) x pdh + j — 1].

On entry: the n by n upper Hessenberg matrix H, as returned by nag dgehrd (fO08nec).

On exit: if job = Nag_EigVals, then the array contains no useful information. If job = Nag_Schur,
then H is overwritten by the upper quasi-triangular matrix 7" from the Schur decomposition (the
Schur form) unless fail > 0.

f08pec.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08pec

8: pdh — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array h.
Constraint: pdh > max(1,n).
9: wr[dim| — double Output
10: wi[dim] — double Output
Note: the dimensions, dim, of the arrays wr and wi must each be at least max(1,n).
On exit: the real and imaginary parts, respectively, of the computed eigenvalues, unless fail > 0 (in
which case see Section 6). Complex conjugate pairs of eigenvalues appear consecutively with the
eigenvalue having positive imaginary part first. The eigenvalues are stored in the same order as on
the diagonal of the Schur form 7' (if computed); see Section 8 for details.
11: z[dim] — double Input/Output
Note: the dimension, dim, of the array z must be at least
max (1, pdz x n) when compz = Nag_UpdateZ or Nag InitZ;
1 when compz = Nag_NotZ.
If order = Nag_ColMajor, the (4, j)th element of the matrix Z is stored in z[(j — 1) x pdz + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix Z is stored in z[(i — 1) x pdz + j — 1].
On entry: if compz = Nag_UpdateZ, z must contain the orthogonal matrix () from the reduction to
Hessenberg form; if compz = Nag_InitZ, z need not be set.
On exit: if compz = Nag_UpdateZ or Nag InitZ, z contains the orthogonal matrix of the required
Schur vectors, unless fail > 0.
z is not referenced if compz = Nag_NotZ.
12: pdz — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array z.
Constraints:
if compz = Nag_UpdateZ or Nag_InitZ, pdz > max(1,n);
if compz = Nag NotZ, pdz > 1.
13: fail — NagError * Output
The NAG error parameter (see the Essential Introduction).
6 Error Indicators and Warnings
NE_INT
On entry, n = (value).
Constraint: n > 0.
On entry, pdh = (value).
Constraint: pdh > 0.
On entry, pdz = (value).
Constraint: pdz > 0.
NE_INT 2

On entry, pdh = (value), n = (value).
Constraint: pdh > max(1,n).

[NP3645/7] f08pec.3

f08pec NAG C Library Manual

NE_INT 3

On entry, n = (value), ilo = {value), ihi = (value).
Constraint: ilo > 1 and min(ilo,n) < ihi < n.

NE_ENUM_INT 2

On entry, compz = {value), n = (value), pdz = (value).
Constraint: if compz = Nag_UpdateZ or Nag_InitZ, pdz > max(1,n);
if compz = Nag _NotZ, pdz > 1.

NE_CONVERGENCE
The algorithm has failed to find all the eigenvalues after a total of 30(ihi — ilo + 1) iterations.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed Schur factorization is the exact factorization of a nearby matrix H + E, where
1Ell, = O()l Hlly,

and ¢ is the machine precision.

If); is an exact eigenvalue, and):Z- is the corresponding computed value, then

|)\~ _ /\| < C(n)€||H||2

(3

where ¢(n) is a modestly increasing function of n, and s; is the reciprocal condition number of ;. The
condition numbers s; may be computed by calling nag_dtrsna (f08qlc).

8 Further Comments

The total number of floating-point operations depends on how rapidly the algorithm converges, but is
typically about:

7n® if only eigenvalues are computed;
10n* if the Schur form is computed;

20n* if the full Schur factorization is computed.
The Schur form 7' has the following structure (referred to as canonical Schur form).

If all the computed eigenvalues are real, 1" is upper triangular, and the diagonal elements of 7' are the
eigenvalues; wr[i] =t;;, for i =1,2,...,n and wi[;] = 0.0.

If some of the computed eigenvalues form complex conjugate pairs, then 7" has 2 by 2 diagonal blocks.

Each diagonal block has the form
Ly tigri \ _ (o B
tivii Livrit e’

f08pec.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08pec

where 3y < 0. The corresponding eigenvalues are « %+ +/Bv; wrli] = wr[i + 1] = a; wii] = ++/|57];
wii + 1] = —wili].

The complex analogue of this function is nag_zhseqr (f08psc).

9 Example

To compute all the eigenvalues and the Schur factorization of the upper Hessenberg matrix H, where

0.3500 —0.1160 —0.3886 —0.2942
—0.5140 0.1225 0.1004 0.1126
0.0000 0.6443 —0.1357 —0.0977
0.0000 0.0000 0.4262 0.1632

H=

See also the example for nag dorghr (f08nfc), which illustrates the use of this function to compute the
Schur factorization of a general matrix.

9.1 Program Text

/* nag_dhseqr (f08pec) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars *x/
Integer i, j, n, pdh, pdz, wi_len, wr_len;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
double *h=0, *wi=0, *wr=0, *z=0;

#ifdef NAG_COLUMN_MAJOR

#define H(I,J) h[(J-1)#*pdh + I - 1]
order = Nag_ColMajor;

#else

#define H(I,J) h[(I-1)*pdh + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("f08pec Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("s*["\n] ");

Vscanf ("$1d%s*[*\n] ", &n);
#ifdef NAG_COLUMN_MAJOR

pdh = n;

pdz = n;
#else

pdh = n;

pdz = n;
#endif

wr_len = n;

wi_len = n;

/* Allocate memory */
if (!'(h = NAG_ALLOC(n #* n, double)) ||

[NP3645/7] f08pec.5

f08pec NAG C Library Manual

B
’_l.
|

! = NAG_ALLOC(wi_len, double)) ||
! (wr = NAG_ALLOC(wr_len, double)) ||
! (z = NAG_ALLOC(n * n, double)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Read H from data file x/
for (i = 1; i <= n; ++1)
{

for (j = 1; J <= n; ++3j)
Vscanf ("$1f", &H(i,3));
}

Vscanf ("%*[*\n] ");

/* Calculate the eigenvalues and Schur factorization of H */
fO08pec(order, Nag_Schur, Nag_InitZ, n, 1, n, h, pdh, wr,
wi, z, pdz, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08pec.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
Vprintf (" Eigenvalues\n");
for (i = 1; 1 <= n; ++1)
Vprintf (" (%8.4f,%8.4f)", wrl[i-1], wil[i-1]);

Vprintf ("\n") ;

/* Print Schur form =*/
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
h, pdh, "Schur form", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print Schur vectors =*/
Vprintf ("\n") ;
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
z, pdz, "Schur vectors of H", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from xO04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
END:
if (h) NAG_FREE (h);
if (wi) NAG_FREE (wi);
if (wr) NAG_FREE (wr) ;
if (z) NAG_FREE(z);

return exit_status;

9.2 Program Data

f08pec Example Program Data
4 :Value of N
0.3500 -0.1160 -0.3886 -0.2942
-0.5140 0.1225 0.1004 0.1126
0.0000 0.6443 -0.1357 -0.0977
0.0000 0.0000 0.4262 0.1632 :End of matrix H

f08pec.6 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

9.3 Program Results

fO8pec Example Program Results

Eigenvalues

f08pec

(0.7995, 0.0000) -0.0994, 0.4008) -0.1007, 0.0000)
Schur form
1 2 3 4
1 0.7995 0.0061 -0.1144 -0.0335
2 0.0000 -0.0994 -0.06483 -0.2026
3 0.0000 0.2477 -0.0994 -0.3474
4 0.0000 0.0000 0.0000 -0.1007
Schur vectors of H
1 2 3 4
1 -0.6551 -0.3450 -0.1036 0.6641
2 0.5972 -0.1706 0.5246 0.5823
3 0.3845 -0.7143 -0.5789 -0.0821
4 0.2576 0.5845 -0.6156 0.4616
[NP3645/7] f08pec.7 (last)

	f08pec
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	job
	compz
	n
	ilo
	ihi
	h
	pdh
	wr
	wi
	z
	pdz
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_ENUM_INT_2
	NE_CONVERGENCE
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

